Part Number Hot Search : 
ASM10 IRF230R TM6010PM 28128 660CT E13007 10019 SMB10
Product Description
Full Text Search
 

To Download MUBW10-12A7 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MUBW 10-12 A7
Converter - Brake - Inverter Module (CBI2)
21 D11 1 D12 D13 2 D14 D15 7 3 D16 14 23 24 8 NTC T7 22 D7 T1 16 15 6 T2 11 10 D2 12 D1 T3 18 17 T4 D3 T5 20 19 T6 13 D5
5 D4
4 D6
9
Three Phase Rectifier VRRM = 1600V IDAVM = 26 A IFSM = 160 A
Brake Chopper VCES = 1200 V IC25 = 20 A VCE(sat) = 2.3 V
Three Phase Inverter VCES = 1200 V IC25 = 20 A VCE(sat) = 2.3 V
Application: AC motor drives with
q
Input Rectifier Bridge D11 - D16 Symbol VRRM IFAV IDAVM IFSM Ptot TC = 80C; sine 180 TC = 80C; rectangular; d = 1/3 TVJ = 25C; t = 10 ms; sine 50 Hz TC = 25C Conditions Maximum Ratings 1600 19 18 160 85 V A A A W
q
q
Input from single or three phase grid Three phase synchronous or asynchronous motor electric braking operation
Features
q
q
q
Symbol
Conditions
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 1.3 1.3 1 1 1.6 0.1 V V mA mA s 1.47 K/W
q
VF IR trr RthJC
IF = 10 A; TVJ = 25C TVJ = 125C VR = VRRM; TVJ = 25C TVJ = 125C VR = 100 V; IF = 10 A; di/dt = -10 A/s (per diode)
q
q
High level of integration - only one power semiconductor module required for the whole drive Fast rectifier diodes for enhanced EMC behaviour NPT IGBT technology with low saturation voltage, low switching losses, high RBSOA and short circuit ruggedness Epitaxial free wheeling diodes with Hiperfast and soft reverse recovery Industry standard package with insulated copper base plate and soldering pins for PCB mounting Temperature sense included
IXYS reserves the right to change limits, test conditions and dimensions.
(c) 2001 IXYS All rights reserved
1-8
105
MUBW 10-12 A7
Output Inverter T1 - T6 Symbol VCES VGES VGEM IC25 IC80 RBSOA tSC (SCSOA) Ptot Conditions TVJ = 25C to 150C Continuous Transient TC = 25C TC = 80C VGE = 15 V; RG = 82 ; TVJ = 125C Clamped inductive load; L = 100 H Maximum Ratings 1200 20 30 20 15 ICM = 20 VCEK VCES 10 105 V V V A A A s W
Equivalent Circuits for Simulation
Conduction
D11 - D16 Rectifier Diode (typ. at TJ = 125C) V0 = 1.11 V; R0 = 19 m T1 - T6 / D1 - D6 IGBT (typ. at VGE = 15 V; TJ = 125C) V0 = 1.32V; R0 = 131 m Free Wheeling Diode (typ. at TJ = 125C) V0 = 1.39 V; R0 = 56 m T7 / D7 IGBT (typ. at VGE = 15 V; TJ = 125C) V0 = 1.32 V; R0 = 131 m Free Wheeling Diode (typ. at TJ = 125C) V0 = 1.39 V; R0 = 56 m
VCE = 720 V; VGE = 15 V; RG = 82 ; TVJ = 125C non-repetitive TC = 25C
Symbol
Conditions
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 2.3 2.7 4.5 0.6 200 50 40 290 60 1.2 1.1 600 45 2.7 6.5 0.6 V V V mA mA nA ns ns ns ns mJ mJ pF nC 1.2 K/W
VCE(sat) VGE(th) ICES IGES td(on) tr td(off) tf Eon Eoff Cies QGon RthJC
IC = 10 A; VGE = 15 V; TVJ = 25C TVJ = 125C IC = 0.4 mA; VGE = VCE VCE = VCES; VGE = 0 V; TVJ = 25C TVJ = 125C VCE = 0 V; VGE = 20 V
Thermal Response
Inductive load, TVJ = 125C VCE = 600 V; IC = 10 A VGE = 15 V; RG = 82
D11 - D16 Rectifier Diode (typ.) Cth1 = 0.093 J/K; Rth1 = 1.212 K/W Cth2 = 0.778 J/K; Rth2 = 0.258K/W T1 - T6 / D1 - D6 IGBT (typ.) Cth1 = 0.09 J/K; Rth1 = 0.954 K/W Cth2 = 0.809J/K; Rth2 = 0.246 K/W
VCE = 25 V; VGE = 0 V; f = 1 MHz VCE = 600V; VGE = 15 V; IC = 10 A (per IGBT)
Output Inverter D1 - D6 Symbol IF25 IF80 Conditions TC = 25C TC = 80C Maximum Ratings 17 11 A A
Free Wheeling Diode (typ.) Cth1 = 0.043 J/K; Rth1 = 2.738 K/W Cth2 = 0.54 J/K; Rth2 = 0.462 K/W T7 / D7
Symbol VF IRM trr RthJC
Conditions IF = 10 A; VGE = 0 V; TVJ = 25C TVJ = 125C IF = 10 A; diF/dt = -400 A/s; TVJ = 125C VR = 600 V; VGE = 0 V (per diode)
Characteristic Values min. typ. max. 2.9 1.9 13 110 V V A ns 3.2 K/W
IGBT (typ.) Cth1 = 0.09 J/K; Rth1 = 0.954 K/W Cth2 = 0.809 J/K; Rth2 = 0.246 K/W Free Wheeling Diode (typ.) Cth1 = 0.043 J/K; Rth1 = 2.738 K/W Cth2 = 0.54 J/K; Rth2 = 0.462 K/W
(c) 2001 IXYS All rights reserved
2-8
MUBW 10-12 A7
Brake Chopper T7 Symbol VCES VGES VGEM IC25 IC80 RBSOA tSC (SCSOA) Ptot Symbol Conditions TVJ = 25C to 150C Continuous Transient TC = 25C TC = 80C VGE = 15 V; RG = 82 ; TVJ = 125C Clamped inductive load; L = 100 H Maximum Ratings 1200 20 30 20 15 ICM = 20 VCEK VCES 10 105 V V V A A A s W
VCE = 720 V; VGE = 15 V; RG = 82 ; TVJ = 125C non-repetitive TC = 25C Conditions
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 2.3 2.7 4.5 0.3 200 50 40 290 60 1.2 1.1 600 45 2.7 6.5 0.5 V V V mA mA nA ns ns ns ns mJ mJ pF nC 1.2 K/W
VCE(sat) VGE(th) ICES IGES td(on) tr td(off) tf Eon Eoff Cies QGon RthJC
IC = 10 A; VGE = 15 V; TVJ = 25C TVJ = 125C IC = 0.4 mA; VGE = VCE VCE = VCES; VGE = 0 V; TVJ = 25C TVJ = 125C VCE = 0 V; VGE = 20 V
Inductive load, TVJ = 125C VCE = 600 V; IC = 10 A VGE = 15 V; RG = 82
VCE = 25 V; VGE = 0 V; f = 1 MH z VCE = 600 V; VGE = 15 V; IC = 10 A
Brake Chopper D7 Symbol VRRM IF25 IF80 Symbol VF IR IRM trr RthJC (c) 2001 IXYS All rights reserved Conditions TVJ = 25C to 150C TC = 25C TC = 80C Conditions IF = 10 A; TVJ = 25C TVJ = 125C VR = VRRM; TVJ = 25C TVJ = 125C IF = 10 A; diF/dt = -400 A/s; TVJ = 125C VR = 600 V Maximum Ratings 1200 17 11 V A A
Characteristic Values min. typ. max. 2.9 1.9 0.06 0.07 13 110 V V mA mA A ns 3.2 K/W
3-8
MUBW 10-12 A7
Temperature Sensor NTC Symbol R25 B25/50 Module Symbol TVJ TJM Tstg VISOL Md Symbol Rpin-chip dS dA RthCH Weight Creepage distance on surface Strike distance in air with heatsink compound 6 6 0.02 180 Conditions Operating Maximum Ratings -40...+125 150 -40...+125 2500 2.7 - 3.3 C C C V~ Nm Conditions T = 25C Characteristic Values min. typ. max. 4.75 5.0 3375 5.25 k K
IISOL 1 mA; 50/60 Hz Mounting torque (M5) Conditions
Characteristic Values min. typ. max. 5 m mm mm K/W g
Dimensions in mm (1 mm = 0.0394")
(c) 2001 IXYS All rights reserved
4-8
MUBW 10-12 A7
Input Rectifier Bridge D11 - D16
50 A 40 IF 30 TVJ= 125C TVJ= 25C 60 102 20 40 TVJ= 150C TVJ= 150C TVJ= 45C 100 50Hz, 80% VRRM A 80 IFSM TVJ= 45C I2t 103 A2s
10
20
0 0.0
0.4
0.8
1.2 VF
1.6 V
2.0
0 0.001
101 0.01 0.1 t s 1 1 2 3 4 5 6 7 ms10 89 t
Fig. 1 Forward current versus voltage drop per diode
500 W 400 Ptot 300
Fig. 2 Surge overload current
Fig. 3 I2t versus time per diode
60 A 50 Id(AV) 40
200
RthA: 0.05 K/W 0.15 K/W 0.3 K/W 0.5 K/W 1 K/W 2 K/W 5 K/W
30
20
100
10
0 0 20 40 60 80 Id(AV)M A 0 20 40 60 80 100 120 140 C
Tamb
0 0 20 40 60 80 100 120 140 C TC
Fig. 4 1
1.6 K/W 1.2 ZthJC
Power dissipation versus direct output current and ambient temperature, sin 8 0
Fig. 5 Max. forward current versus case temperature
0.8
0.4
0.0 0.001
DWF N9-16
0.01
0.1
1 t
s
10
Fig. 6 Transient thermal impedance junction to case (c) 2001 IXYS All rights reserved
5-8
MUBW 10-12 A7
Output Inverter T1 - T6 / D1 - D6
30 25 A
IC 30 25 A
VGE = 17V 15V 13V
IC 20 15
11V
20 15 10 5 0 0 1
VGE = 17V 15V 13V
11V
10
9V 9V TVJ = 25C
5
TVJ = 125C
0
2
3
4
VCE
5
6V7
0
1
2
3
4
5 VCE
6V7
Fig. 7 Typ. output characteristics
Fig. 8 Typ. output characteristics
30 25 A
IC IF
30 25 A 20
TVJ = 125C TVJ = 25C
20 15 10
TVJ = 125C TVJ = 25C
15 10 5
VCE = 20V
5 0 4 6 8 10 12 VGE 14 V 16
0
0
1
2
VF
3
V
4
Fig. 9 Typ. transfer characteristics
Fig. 10 Typ. forward characteristics of free wheeling diode
40
trr
20
V
$
ns trr
15
VGE
IRM
A 30
10
20
TVJ = 125C VR = 600V IF = 10A
MUBW1012A7
& "
5
VCE = 600V IC = 10A
10
IRM
0 0 10 20 30 40
QG nC 50
0 60 0 200 400
600 800 A/s -di/dt
1000
Fig. 11 Typ. turn on gate charge
Fig. 12 Typ. turn off characteristics of free wheeling diode
(c) 2001 IXYS All rights reserved
6-8
MUBW 10-12 A7
Output Inverter T1 - T6 / D1 - D6
4
mJ Eon
VCE = 600V VGE = 15V RG = 82 TVJ = 125C
80 ns 60 t 40 Eoff
4
mJ
400 ns 300 t 200
3
3
VCE = 600V VGE = 15V
Jd(off) Eoff
Jd(on)
2
Jr
2
RG = 82 TVJ = 125C
1
Eon
20
1
Jf
100
0 0 5 10 15 IC 20 A
0
0
0 5 10 15 IC 20 A
0
Fig. 13 Typ. turn on energy and switching times versus collector current
2.0
mJ Eon 1.5
VCE = 600V VGE = 15V IC = 10A TVJ = 125C
Fig. 14 Typ. turn off energy and switching times versus collector current
1.2
Eoff mJ t Eoff Jd(off)
VCE = 600V VGE = 15V IC = 10A TVJ = 125C
Eon
100 ns
600 ns 400 t
Jd(on) Jr
75
0.8
1.0
50
0.4 0.5
25
200
Jf
0.0 0 20 40 60 80 100
RG
0 120 140
0.0 0 20 40 60 80 100
RG
0 120 140
Fig. 15 Typ. turn on energy and switching times versus gate resistor
25
A 10 K/W ZthJC 1
Fig.16 Typ. turn off energy and switching times versus gate resistor
diode IGBT
20
ICM
15 10 5 0 0
0.1 0.01
single pulse RG = 82 TVJ = 125C
0.001 0.0001 0.00001 0.0001 0.001
MUBW1012A7
200
400
600
800 1000 1200 1400 V VCE
0.01
0.1 t
1
s 10
Fig. 17 Reverse biased safe operating area RBSOA
Fig. 18 Typ. transient thermal impedance
(c) 2001 IXYS All rights reserved
7-8
MUBW 10-12 A7
Brake Chopper T7 / D7
30
A 25 IC IF 30 A 25 20
TVJ = 25C TVJ = 125C TVJ = 125C TVJ = 25C
20 15 10 5
VGE = 15V
15 10 5 0
0 0 1 2 3 4
VCE
5
V6
0
1
2
VF
3
V
4
Fig. 19 Typ. output characteristics
Fig. 20 Typ. forward characteristics of free wheeling diode
500
2.5
mJ Eoff 2.0
VCE = 600V VGE = 15V RG = 82 TVJ = 125C
1.2
mJ t Eoff Eoff Jd(off)
VCE = 600V VGE = 15V IC = 20A TVJ = 125C
600 ns t 400
ns 400 Jd(off) 300 200
0.8
1.5 1.0 0.5 0.0 0 4 8
Eoff Jf
0.4
100
200
Jf 0 A 20
0.0
0 20 40 60 80 100
12
IC
16
0 120 140 RG
Fig. 21 Typ. turn off energy and switching times versus collector current
10 K/W 1 ZthJC 0.1 R 0.01 0.001
single pulse diode IGBT
Fig. 22 Typ. turn off energy and switching times versus gate resistor
Temperature Sensor NTC
10000 1000
0.0001 0.00001 0.0001 0.001
100 0.01 0.1 t 1 s 10 0 25 50 75 100 T
MUBW1012A7
125 C 150
Fig. 23 Typ. transient thermal impedance
Fig. 24 Typ. thermistorresistance versus temperature
(c) 2001 IXYS All rights reserved
8-8


▲Up To Search▲   

 
Price & Availability of MUBW10-12A7

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X